Date of Issue: December 13, 2018

Affected Publication: API SPECIFICATION 5CT, Casing and Tubing, 10th Edition, June 2018

Errata 1

Text Corrections

Section 3.1.10, Corrections shall be made as indicated within the red box:

NOTE The main difference between coupling material and coupling stock is that coupling material has no mandatory NDE inspection requirements (see 10.15); see Section 9 for mandatory NDE requirements for finished couplings.

Section 3.1.19, Corrections shall be made as indicated within the red box:

NOTE See Table C.42 or Table E.42.

Section 3.2, Corrections shall be made as indicated within the red boxes:

ArB

 E_f

 q_{v}

D

•

 S_c

Ĺ

W

W_c

YS_{max}

 YS_{min}

Section 4.3, Corrections shall be made as indicated within the red box:

4.3 Dual Referencing

In the interests of worldwide application of this standard, the API Subcommittee on Tubular Goods (SC5) has decided, after detailed technical analysis, that certain documents listed in Section 2 and prepared by API SC5 or other technical committees are interchangeable in the context of the relevant requirement with the relevant document prepared by the International Organization for Standardization (ISO) or the American Society for Testing and Materials (ASTM). These latter documents are cited in the running text following the API reference and preceded by

Section 6.2.1, Corrections shall be made as indicated within the red box:

For the purposes of this standard, in addition to the terms and definitions given in Section 3, the terms and definitions given in ASTM A941 for heat treatment operations also apply.

Section 7.5.1, Corrections shall be made as indicated within the red box:

7.5.1 Grades H40, J55, and K55

Section 7.10.1, Corrections shall be made as indicated within the red box:

For each size, mass, chemical composition, and austenitize-and-quench combination, a through-wall hardness test shall be made on products after quenching and prior to tempering for each production run to characterize the hardening response. These tests shall be made on the body of products or, in the case of upset products or accessory material, shall be made in the upset or design area of greatest wall thickness. Mean hardness numbers shall equal or exceed the hardness corresponding to a minimum of 90 % martensite, as determined by Equation (2):

Section 10.5.4. Corrections shall be made as indicated within the red box:

10.5.4 Test Method for Grades H40, J55, K55, N80 (All Types), R95, and L80 (Type 1)

Section 10.7.8. Corrections shall be made as indicated within the red box:

10.7.8 Replacement of a Reject Length—All Grades

If the results of a test do not meet the requirements of 7.4 to 7.6, as applicable, and do not qualify for retesting in accordance with [10.7.7], then an additional three test specimens shall be removed from each of three additional lengths from the lot. If all the additional lengths tested conform to the requirements, then the lot shall be qualified except for the length that was initially rejected. If one or more of the additional lengths tested fail to conform to the specified requirements, the manufacturer may elect to test individually the remaining lengths in the lot or reheat-treat and test the lot as a new lot.

Section 10.15.9, Corrections shall be made as indicated within the red boxes:

10.15.9 Full-body, Full-length NDE of Casing and Tubing-grades C90, T95, C110, and Q125

All pipe shall be ultrasonically inspected for the detection of both longitudinal and transverse imperfections on the outside and inside surfaces to acceptance level L2 in accordance with ISO 10893-10 or ASTM E213 (Iongitudinal) and ISO 10893-10 or ASTM E213 (transverse).

Section 10.15.10, Third paragraph, Corrections shall be made as indicated within the red box:

For Grades H40, J55, K55, N80 (all types), R95, and L80 (all types), the weld seam shall be inspected for the detection of longitudinal imperfections by one or more of the following methods:

Section 10.15.11, Corrections shall be made as indicated within the red boxes:

10.15.11 NDE of Coupling Stock Except Grade C110). Accessory Material (Except Grade C110) and Pup Joints (All Grades)

Section 10.15.11.1, Corrections shall be made as indicated within the red box:

10.15.11.1 When NDE is required for coupling stock or accessory material, except Grade C110, according to Table C.42 or Table E.42, the inspection shall be for the detection of longitudinal and transverse imperfections on the outside surface to acceptance level L2 by one or more of the following methods:

Section 10.15.12.1, Corrections shall be made as indicated within the red box:

10.15.12.1 General

All coupling stock and accessory material shall be inspected for the detection of longitudinal and transverse imperfections on the outside surface to acceptance level L2 by one or more of the following methods:

Section G.3.2, Corrections shall be made as indicated within the red box:

G.3.2 Wall Thickness

The USC values for wall thickness were converted to SI values using Equation (G.3):

$$t_m = 25.4 \times t \tag{G.3}$$

Section G.10.3, Corrections shall be made as indicated within the red boxes:

G.10.3 Critical Stress Intensity Factor (Klssc) for SSC Requirements

The critical stress intensity factor K_{BSC} expressed in USC may be converted to SI values using Equation (G.35):

$$K_{Isscm} = 1.099 \times K_{Issc}$$
(G.35)

where

K_{Isscm} is the critical stress intensity factor for SSC, expressed in megapascals–square root of meters (MPa-√m);

K_{ISSC} is the critical stress intensity factor for SSC, expressed in kilopounds–square root of inches (ksi.√in.).

The converted SI values for critical stress intensity factor K_{Liscom} for SSC may be rounded to the nearest 0.1 megapascals—square root of meters (MPa· \sqrt{m}).

The converted USC values for critical stress intensity factor $K_{E_{30}}$ for SSC may be rounded to the nearest 0.1 kilopounds-square root of inches (ksi- $\sqrt{\text{in.}}$).

Section H.3.2, Corrections shall be made as indicated within the red box:

H.3.2 Grades R95 and P110 (6.3.1, 6.3.3)

Gag press straightening or hot rotary straightening [400 °C (750 °F)] minimum at end of rotary straightening unless a higher minimum temperature is specified in the purchase agreement] is acceptable. If hot rotary straightening is not possible, the pipe may be cold-rotary straightened provided it is then stress-relieved at 510 °C (950 °F) or higher.

Section J.7.1, item h), Corrections shall be made as indicated within the red box:

h) NDE for longitudinal and transverse, internal and external defects to acceptance level [12] [H.18.1.3].

Section K.6.5.1 through K.6.5.6, Corrections shall be made as indicated within the red boxes:

K.6.5.1 SR 11.5.1—Non-weld Area Inspection

The pipe body shall be inspected in the same manner as the seamless product as specified in Section 10.

K.6.5.2 SR 11.5.2—Non-destructive Examination of Weld Seam

The weld seam of pipe (except upset ends) furnished to this standard shall be inspected non-destructively full-length (100 %) by ultrasonic methods. The inspection shall be performed after all heat treatment and any subsequent rotary straightening operation. Pipe upsets shall be inspected as specified in 10.15.14.

K.6.5.3 SR 11.5.3 Equipment

Any equipment utilizing the ultrasonic principles capable of continuous and uninterrupted inspection of the weld seam shall be used. The equipment shall be checked with an applicable reference standard as described in K.6.5.4 (SR 11.5.4) at least once every working shift to demonstrate the effectiveness of the inspection equipment and procedures. The equipment shall be adjusted to produce well-defined indications when the reference standard is scanned by the inspection unit in a manner simulating the inspection of the product, and shall be capable of inspecting 1.6 mm ($^{1}/_{16}$ in.) on either side of the weld line for the entire wall thickness.

K.6.5.4 SR 11.5.4—Reference Standards

K.6.5.5 SR 11.55—Rejection Limits

Any imperfection that produces a signal greater than or equal to the signal received from the reference standard shall be considered a defect unless it can be demonstrated by the manufacturer that the imperfection does not exceed the provisions of K.6.5.6 SR 11.56.

K.6.5.6 SR 11.56—Disposition

Section K.7.2, Third paragraph; Corrections shall be made as indicated within the red box:

By agreement between purchaser and manufacturer, a factor F of 3.090 may be used in lieu of the values given in Table C.51 (SR 12.1) or Table E.51 (SR 12.1) provided the standard deviation of the new lot of material is consistent with past experience.

Section K.9.6.5, Corrections shall be made as indicated within the red box:

K.9.6.5 SR 16.6.5—Sub-size Test Temperature Reduction—Grades H40, J55, and K55 Only

A test temperature reduction may be required when sub-size test specimens are used. The test temperature reduction depends on the thickness of the pipe and the size of the impact test specimen.

The test temperature reduction specified in Table C.57 (SR 16.7) or Table E.57 (SR 16.7) shall be used when applicable.

Bibliography, Item 12: Corrections shall be made as indicated within the red box:

[12] NACE MR0175/ISO 15156-1, Petroleum and natural gas industries—Materials for use in H₂S—containing environments in oil and gas production—Part 1: General principles for selection of cracking-resistant materials

Figure Corrections

Figure D.14: The figure shall be updated as indicated within the red boxes:

Dimensions in millimeters (inches) unless otherwise specified

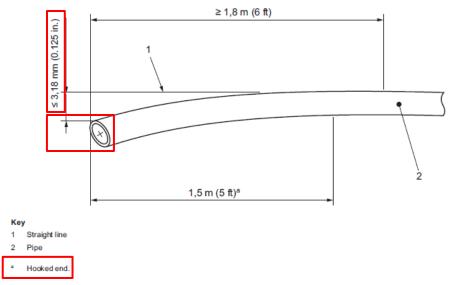


Figure D.14—Measuring End Straightness

Figure D.17: The figure shall be updated as indicated within the red box:

✓ 78	E 10.00		0 (0. 100)	E10.0E (0.000)	E 10. 10 (0.0E0)	2.01 (0.100)	0.00 (0.100)
9 ⁵ / ₈	244.48	47.6 (1.875)	4.78 (0.188)	243.92 (9.603)	244.55 (9.628)	2.54 (0.100)	3.96 (0.156)
10 ³ / ₄	273.05	44.5 (1.750)	4.78 (0.188)	272.67 (10.735)	273.30 (10.760)	2.54 (0.100)	3.96 (0.156)
11 ³ / ₄	298.45	47.6 (1.875)	4.78 (0.188)	297.89 (11.728)	298.53 (11.753)	2.54 (0.100)	3.96 (0.156)
13 ³ / ₈	339.72	57.2 (2.250)	4.78 (0.188)	338.56 (13.329)	339.19 (13.354)	2.54 (0.100)	3.96 (0.156)
16	406.40	69.9 (2.750)	4.78 (0.188)	404.44 (15.923)	405.08 (15.948)	2.54 (0.100)	3.96 (0.156)
18 ⁵ / ₈	473.08	69.9 (2.750)	4.78 (0.188)	471.12 (18.548)	471.75 (18.573)	2.54 (0.100)	3.96 (0.156)
20	508.00	69.9 (2.750)	4.78 (0.188)	506.04 (19.923)	506.68 (19.948)	2.54 (0.100)	3.96 (0.156)

Figure D.22: The figure title shall be revised as indicated within the red boxes:

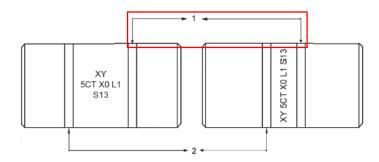
Figure D.22—Examples of Marking Requirements and Sequence for Manufacturers and Threaders using the API Monogram (Annexes A and F), Section 11, and Table C.48 or E.48

a) **EXAMPLE 1**—Tubing Label 1: 2 ⁷/₈, Label 2: 6.5, Grade N80 Type 1, electric weld, external upset, threaded (by the manufacturer) pin-by-pin without couplings. January 20XX.

b) EXAMPLE 2—Tubing Label 1: 2 $^{7}/_{8}$, Label 2: 8.7, Grade L80 Type 1, seamless, external upset, plain-end. Additional requirements include hydrostatic testing to 94.5 MPa (13,700 psi) and inspection to SR 2. January 20XX.

EXAMPLE 3—Casing Label 1: 7, Label 2: 35, Grade C90 Type 1, seamless, plain-end, serial number 201. Supplementary requirement 16 (SR 16) for test at -10 °C (+14 °F). The pipe was pressure tested to 69 MPa (10,000 psi). February 20XX.

d) EXAMPLE 4 e — Tubing coupling for Label 2 $^{7}/_{8}$, Grade J55, normalized upset (or non-upset) tubing, only visual inspection required. April 20XX.


Figure D.22 (continued): The figure title shall be revised as indicated within the red boxes:

Stamp Marking—Optional [within approximately 0.3 m (1 ft) from the coupling]

EXAMPLE 5 ^e—Buttress casing with coupling: Label 1: 9 ⁵/₈, Label 2: 53.5, Grade P110, electric weld; supplementary requirements are SR 11 and SR 16 for test at –18 °C (0 °F) and 215.9 mm (8.500 in.) drift test. Coupling is tin-plated. December 20XX.

Figure D.29: The figure shall be updated as indicated within the red box:

Table Corrections

Table 3: Corrections shall be made as indicated within the red box:

Table 3—Purchaser/Manufacturer Agreement (Casing)

Requirement	Reference
Upset—Grade C110	6.1
Cold rotary straightening—Grade Q125	6.3.6
Statistical tensile testing	7.2.4, K.11 (SR 38)
Statistical impact testing	7.3.8, K.7 (SR 12)
Impact of non-heat-treated product	7.5.1, K.9 (SR 16)
Alternative hardenability requirement for products with a wall thickness of 30 mm (1.181 in.) or larger	7.10.2

Table 7: Corrections shall be made as indicated within the red boxes:

	Requirement	Reference
Standard		API 5CT

Table 9: The title shall be revised as indicated within the red box:

Table 9—Full-size Test Specimen Minimum Absorbed Energy Requirements (Couplings for Grades N80 [All Types], R95, L80 [All Types], C90, T95, P110, and Q125)

Table 10: Values shall be updated as indicated within the red boxes:

Transverse Requirement $C_{\mathcal{V}}$	Longitudinal Requirement $C_{\mathcal{V}}$
$YS_{min} \times (0.00118t + 0.01259)$	$YS_{min} \times (0.00236t + 0.02518)$
or 14 J, whichever is greater	or 27 J, whichever is greater
(Table C.18)	(Table C.19)
$YS_{min} \times (0.00118t + 0.01259)$	$YS_{min} \times (0.00236t + 0.02518)$
or 20 J, whichever is greater	or 41 J, whichever is greater
(Table C.18)	(Table C.19)
$Y.S_{min} \times (0.152t + 0.064)$	$YS_{min} \times (0.304t + 0.128)$
or 10 ft-lb, whichever is greater	or 20 ft·lb, whichever is greater
(Table E.18)	(Table E.19)
$YS_{min} \times (0.152t + 0.064)$	$Y.S_{min} \times (0.304t + 0.128)$
or 15 ft-lb, whichever is greater	or 30 ft·lb, whichever is greater
(Table E.18)	(Table E.19)

Table 11: Corrections shall be made as indicated within the red box:

Unit System and Grade	
SI units, joules	
Grades C110 and Q125	
USC units, foot-pounds	
Grades C110 and Q125	

Table 14: Values shall be updated as indicated within the red boxes:

Table 14—Dimension Tolerances (Upset Integral Tubing)

Label 1	Tolerances behind m_{eu} or L_0
≤ 3 ¹ / ₂	+2.38 mm (+3/32 in.)

Table 15: Values shall be updated as indicated within the red boxes:

Table 15—Dimension Tolerances (External Upset Tubing)

Label 1	Tolerances
$\geq 2^{3}/_{8}$ to $\leq 3^{1}/_{2}$	+2.38 mm (+3/32 in.)
$> 3^{1}/_{2}$ to ≤ 4	$\frac{+7.78}{-0.79}$ mm $\begin{pmatrix} +7/64\\-1/32 \end{pmatrix}$ in.)

Table C.1: The text and values shall be made as indicated within the red boxes:

Lab	els ^a	Outside Diameter	Nominal Linear Mass b,c T&C	Wall Thick- ness				Type of Er	nd-finish ^d			
1	2	D mm	kg/m	t mm	H40	J55 K55	L80 R95	N80 Type 1, Q	C90 T95	C110	P110	Q125
1	2	3	4	5	6	7	8	9	10	11	12	13
4 ¹ / ₂	9.50	114.30	14.38	5.21	PS	PS	_	_	_	_	_	_
4 ¹ / ₂	10.50	114.30	15.73	5.69	_	PSB	_	_	_	_	_	_
4 ¹ / ₂	11.60	114.30	17.38	6.35	_	PSLB	PLB	PLB	PLB	Р	PLB	_
4 ¹ / ₂	13.50	114.30	19.87	7.37	_	_	PLB	PLB	PLB	Р	PLB	_
4 1/2	15.10	114.30	22.69	8.56	_	_	_	_	_	_	PLB	PLB
5	11.50	127.00	17.19	5.59	_	PS	_	_	_	_	_	_
5	13.00	127.00	19.69	6.43	_	PSLB	_	_	_	_	_	_
5	15.00	127.00	22.69	7.52	_	PSLB	PLB	PLB	PLB	P	PLB	PLB
5	18.00	127.00	27.19	9.19	_	_	PLB	PLB	PLB	P	PLB	PLB
5	21.40	127.00	32.13	11.10	_	_	PLB	PLB	PLB	P	PLB	PLB
5	23.20	127.00	34.76	12.14	_	_	PLB	PLB	PLB	P	PLB	PLB
5	24.10	127.00	36.15	12.70	_	_	PLB	PLB	PLB	Р	PLB	PLB
5 ¹ / ₂	14.00	139.70	20.91	6.20	PS	PS	_	_	_	_	_	_
5 ¹ / ₂	15.50	139.70	23.48	6.98	_	PSLB	_	_	_	_	_	_
5 ¹ / ₂	17.00	139.70	25.72	7.72	_	PSLB	PLB	PLB	PLB	Р	PLB	_
5 ¹ / ₂	20.00	139.70	30.05	9.17	_	_	PLB	PLB	PLB	Р	PLB	_
5 ¹ / ₂	23.00	139.70	34.05	10.54	_	_	PLB	PLB	PLB	Р	PLB	PLB
5 ¹ / ₂	26.80	139.70	40.15	12.70	_	_	_	_	P	P	_	_
5 ¹ / ₂	29.70	139.70	44.47	14.27	_	_	_	_	P	P	_	_
5 ¹ / ₂	32.60	139.70	48.74	15.88	_	_	_	-	P	Р	_	_
5 ¹ / ₂	35.30	139.70	52.80	17.45	_	_	_	-	P	Р	_	_
5 ¹ / ₂	38.00	139.70	56.82	19.05	_	_	_	-	Р	Р	_	_
5 ¹ / ₂	40.50	139.70	60.64	20.62	_	_	_	-	Р	Р	_	_
5 ¹ / ₂	43.10	139.70	64.41	22.22	_	_	_	_	Р	Р	_	_
6 ⁵ / ₈	20.00	168.28	29.76	7.32	PS	PSLB	_	_	_	_	_	_
6 ⁵ / ₈	24.00	168.28	35.72	8.94	_	PSLB	PLB	PLB	PLB	Р	PLB	_
6 ⁵ / ₈	28.00	168.28	41.67	10.59	_	_	PLB	PLB	PLB	Р	PLB	_
6 ⁵ / ₈	32.00	168.28	47.62	12.06	_	_	PLB	PLB	PLB	Р	PLB	PLB

Table C.4: Values shall be updated as indicated within the red boxes:

Table C.4—Chemical Composition, Mass Fraction (%)

Grade	Туре	(N	ln	M	lo	C	îr .	Ni	Cu	Р	S	Si
Grade	туре	min	max	min	max	min	max	min	max	max	max	max	max	max
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
H40	_	_	_	_	_	_	_	_	_	_	_	0.030	0.030	_
J55	_	_	_	_	_	_	_	_	_	_	_	0.030	0.030	_
K55	_	_	_	_	_	_	_	_	_	_	_	0.030	0.030	_
N80	1	_	_	_	_	_	_	_	_	_	_	0.030	0.030	_
N80	Q	_	_	_	_	_	_	_	_	_	_	0.030	0.030	_
R95	_	_	0.45 c	_	1.90	_	_	_	_	_	_	0.030	0.030	0.45
L80	1	_	0.43 a	_	1.90	_	_	_	_	0.25	0.35	0.030	0.030	0.45
L80	9Cr	_	0.15	0.30	0.60	0.90	1.10	8.00	10.0	0.50	0.25	0.020	0.010	1.00
L80	13Cr	0.15	0.22	0.25	1.00	_	_	12.0	14.0	0.50	0.25	0.020	0.010	1.00
C90	1	_	0.35	_	1.20	0.25 b	0.85	_	1.50	0.99	_	0.020	0.010	_
T95	1	_	0.35	_	1.20	0.25 _b	0.85	0.40	1.50	0.99	_	0.020	0.010	_
C110	_	_	0.35	_	1.20	0.25	1.00	0.40	1.50	0.99	_	0.020	0.005	_

Table C.5: The text shall be updated as indicated within the red boxes:

Table C.5—Tensile and Hardness Requirements

Grade	Type	Total Elongation Under Load	Yield S M	trength Pa	Tensile Strength min		ess ^{a,o} ax	Specified Wall Thickness	Allowable Hardness Variation ^b
		%	min	max	MPa	HRC	HBW	mm	HRC
1	2	3	4	5	6	7	8	9	10
H40	_	0.5	276	552	414	_	_	_	_
J55	_	0.5	379	552	517	_	_	_	_
K55	_	0.5	379	552	655	_	_	_	_
N80	1	0.5	552	758	689	_	_	_	_
N80	Q	0.5	552	758	689	_	_	_	_
R95	_	0.5	655	758	724	_	_	_	_
L80	1	0.5	552	655	655	23.0	241	_	_
L80	9Cr	0.5	552	655	655	23.0	241	_	_
L80	13Cr	0.5	552	655	655	23.0	241	_	_
C90	1	0.5	621	724	689	25.4	255	≤12.70	3.0
								12.71 to 19.04	4.0
								19.05 to 25.39	5.0
								≥ 25.40	6.0
T95	1	0.5	655	758	724	25.4	255	≤12.70	3.0
								12.71 to 19.04	4.0
								19.05 to 25.39	5.0
								≥ 25.40	6.0
C110	_	0.7	758	828	793	30.0	286	≤12.70	3.0
								12.71 to 19.04	4.0
								19.05 to 25.39	5.0
								≥ 25.40	6.0
P110	_	0.6	758	965	862	_	_	_	_
Q125	1	0.65	862	1034	931	b	_	≤12.70	3.0
								12.71 to 19.04	4.0
								≥19.05	5.0

a In case of dispute, laboratory Rockwell C hardness testing shall be used as the referee method.

b No hardness limits are specified, but the maximum variation is restricted as a manufacturing control in accordance with 7.8 and 7.9.

For through-wall hardness tests of Grades L80 (all types), C90, T95 and C110, the requirements stated in HRC scale are for maximum mean hardness number.

Table C.6: Values shall be updated as indicated within the red boxes:

Table C.6—Elongation Table

						Minin	num Elong	ation in 50	.8 mm		
							9	6			
l	Tensile	Test Specimen					Gra	ade			
				H40	J55	K55 L80	N80 C90	R95 T95	C110	P110	Q125
Specimen Area	Sp	ecified Wall Thickne mm	988	Specified Minimum Tensile Strength MPa							
mm ²	Specimen Width 19 mm	Specimen Width 25 mm	Specimen Width 38 mm	414	517	655	689	724	793	862	931
1	2	3	4	5	ō	7	8	9	10	11	12
490	≥ 25.53	≥ 19.41	≥ 12.77	30	24	20	19	18	16	15	14
480	25.00-25.52	19.00-19.40	12.51-12.76	29	24	19	19	18	16	15	14
470	24.48-24.99	18.61-18.99	12.24-12.50	29	24	19	19	18	16	15	14
460	23.95-24.47	18.20-18.60	11.98-12.23	29	24	19	18	18	16	15	14
450	23.43-23.94	17.81-18.19	11.72-11.97	29	24	19	18	18	16	15	14
440	22.90-23.42	17.40-17.80	11.45-11.71	29	24	19	18	18	16	15	14
430	22.37-22.89	17.01-17.39	11.19-11.44	29	24	19	18	17	16	15	14
420	21.85-22.36	16.60-17.00	10.93-11.18	29	23	19	18	17	16	15	14
410	21.32-21.84	16.21-16.59	10.66-10.92	29	23	19	18	17	16	15	14
400	20.79-21.31	15.80-16.20	10.40-10.65	28	23	19	18	17	16	15	14
390	20.27-20.78	15.41-15.79	10.14-10.39	28	23	19	18	17	16	15	14
380	19.74-20.26	15.00-15.40	9.87-10.13	28	23	19	18	17	16	15	14
370	19.22-19.73	14.61-14.99	9.61-9.86	28	23	19	18	17	16	14	13
360	18.69-19.21	14.20-14.60	9.35-9.60	28	23	18	18	17	16	14	13
350	18.16-18.68	13.81-14.19	9.08-9.34	28	23	18	17	17	15	14	13
340	17.64-18.15	13.40-13.80	8.82-9.07	28	23	18	17	17	15	14	13
330	17.11-17.63	13.01-13.39	8.56-8.81	27	22	18	17	17	15	14	13
320	16.58-17.10	12.60-13.00	8.29-8.55	27	22	18	17	16	15	14	13
310	16.06-16.57	12.21-12.59	8.03-8.28	27	22	18	17	16	15	14	13
300	15.53-16.05	11.80-12.20	7.77-8.02	27	22	18	17	16	15	14	13
290	15.01-15.52	11.41-11.79	7.51-7.76	27	22	18	17	16	15	14	13
280	14.48-15.00	11.00-11.40	7.24-7.50	26	22	18	17	16	15	14	13
270	13.95-14.47	10.61-10.99	6.98-7.23	26	22	17	17	16	15	14	13
260	13.43-13.94	10.20-10.60	6.72-6.97	26	21	17	16	16	15	13	13
250	12.90-13.42	9.81-10.19	6.45-6.71	26	21	17	16	16	14	13	12
240	12.37-12.89	9.40-9.80	6.19-6.44	26	21	17	16	16	14	13	12
230	11.85-12.36	9.01-9.39	5.93-6.18	25	21	17	16	15	14	13	12
220	11.32-11.84	8.60-9.00	5.66-5.92	25	21	17	16	15	14	13	12
210	10.79-11.31	8.21-8.59	5.40-5.65	25	20	17	16	15	14	13	12
200	10.27-10.78	7.80-8.20	5.14-5.39	25	20	16	16	15	14	13	12
190	9.74-10.26	7.41-7.79	4.87-5.13	24	20	16	15	15	14	13	12
180	9.22-9.73	7.00-7.40	4.61-4.86	24	20	16	15	15	13	13	12
170	8.69-9.21	6.61-6.99	4.35-4.60	24	20	16	15	14	13	12	12

Table C.7: The title shall be revised as indicated in red box:

Table C.7—Critical Thickness for Couplings with API Threads

Dimensions in millimeters

		Critical Thickness for Couplings									
Label 1		EU	Special C	Clearance	B.C.	LC	80				
	NU	EU	EU	BC	BC	LC	SC				

Table C.13: Corrections shall be made as indicated in the red boxes:

Table C.13—Charpy Impact Test Specimen Requirements for Couplings, Coupling Stock, Coupling Material, Coupling Blanks, and Accessory Material for Grades N80 (All Types), R95, and T95

		API Connection	on Type and C\	/N Specimen (Orientation, Siz	e, and Energy	
Label 1	NU	EU	Special-cl	learance ^b	ВС	LC	sc
	NU	EU	EU	BC	ВС	LC	30
1	2	3	4	5	6	7	8
1.050	a	L-5-22	_	_	_	_	_
1.315	L-5-22	L-7-32	_	_	_	_	_
1.660	L-5-22	L-5-22	_	_	_	_	_
1.900	L-5-22	L-7-32	_	_	_	_	_
2 3/8	L-7-32	L-7-32	L-7-32	_	_	_	_
2 7/8	L-10-40	L-10-40	L-10-40	_	_	_	_
3 1/2	T-5-11	T-5-11	T-5-11	_	_	_	_
4	T-7-16	T-7-16	_	_	_	_	_
4 1/2	T-7-16	T-7-21	_	L-7-32	T-7-16	T-7-16	_
5	_	_	_	T-5-11	T-10-20	T-10-20	_
5 ¹ / ₂	_	_	_	T-5-11	T-10-20	T-10-20	_
6 ⁵ /8	_	_	_	T-10-20	T-10-20	T-10-21	_
7	_	_	_	T-7-16	T-10-21	T-10-21	_
7 ⁵ /8	_	_	_	T-10-20	T-10-22	T-10-23	_
8 ⁵ /8	_	_	_	T-10-20	T-10-23	T-10-24	_
9 ⁵ /8	_	_	_	T-10-20	T-10-23	T-10-24	_
10 ³ / ₄	_	_	_	T-10-20	T-10-23	_	T-10-24
11 ³ / ₄	_	_	_	_	T-10-23	_	T-10-24
13 ³ / ₈	_	_	_	_	T-10-23	_	T-10-24
16	_	_	_	_	_	_	_
18 ⁵ /8	_	_	_	_	_	_	_
20	_	_	_	_	_	_	_

NOTE In this table, the specimen orientation (T or L) is followed by the minimum specimen size (10, 7, or 5) which is followed by the minimum absorbed energy requirement (joules) according to the following code. The absorbed energy requirement is adjusted for the test specimen size indicated. Orientation and specimen size is calculated on coupling material/stock wall and not coupling critical thickness.

T is the transverse specimen orientation (see Figure D.11).

L is the longitudinal specimen orientation (see Figure D.11).

^{10 =} full-size (i.e. 10 mm × 10 mm)

 $^{7 = \}frac{3}{4}$ -size (i.e. 10 mm × 7.5 mm)

^{5 = 1/2-}size (i.e. 10 mm × 5 mm)

Not thick enough to test.

The information in this table assumes that special clearance couplings are machined from regular coupling blanks.

Table C.18: The text shall be moved down one row as indicated in red box:

Table C.18—Transverse Charpy Absorbed Energy Requirements for Pipe

	М	aximum Specified \	Wall Thickness	_s a		Minimum Transverse
N80, L80	C90	R95, T95	C110	P110	Q125	Absorbed Energy J
1	2	3	4	5	6	7
11.59	9.11	8.09	_	_	_	14
13.12	10.48	9.38	_	_	_	15
14.66	11.84	10.67	_	_	_	16
16.19	13.21	11.97	_	_	_	17
17.73	14.57	13.26	_	_	_	18
19.26	15.94	14.56	_	_	_	19
20.80	17.30	15.85	10.31	12.24	6.13	20
22.33	18.67	17.14	11.33	13.36	6.95	21
23.87	20.03	18.44	12.35	14.48	7.77	22
25.40	21.40	19.73	13.38	15.60	8.59	23
_	22.76	21.02	14.40	16.72	9.41	24
_	_	_	15.42	17.83	10.23	25
_	_	_	16.45	18.95	11.04	26
_	_	_	17.47	20.07	11.86	27
_	_	_	18.50	21.19	12.68	28
_	_	_	19.52	22.31	13.50	29
_	_	_	20.54	23.43	14.32	30
_	_	_	21.57	24.54	15.14	31
_	_	_	22.59	25.66	15.96	32
_	_	_	23.61	_	16.78	33

Table C.23: Corrections shall be made as indicated within the red boxes:

Table C.23—Dimensions and Masses for Standard Casing and for Casing Threaded with API Round Thread and Buttress Thread

Labels ^a		Outside Linear Mass T& C b,c					Calc	ulated Ma	iss ^c			
			Linear Mass	Linear Thick-		Drift Diameter	Plain- end	e _m , Mass Gain or Loss Due to End Finishing ^d kg				
Lab	CIS							Round	Round Thread		Buttress Thread	
		D mm	kg/m	t mm	d mm	mm	w _{pe} kg/m	Short	Long	RC	SCC	
			Kg/III				Kg/III	Onort	Long	110	000	
1	2	3	4	5	6	7	8	9	10	11	12	
. 4 .												

f Based on 758 MPa minimum yield strength or greater.

⁹ Based on 379 MPa minimum yield strength.

Table C.26: Values shall be updated as indicated within the red box:

1.900	2.40	48.26	3.57	_	38.89	38.89	6.35	53.59	50.80	25.40	49.86	0.79
1.900	2.76	48.26	4.11	_	38.89	38.89	6.35	53.59	50.80	25.40	49.86	0.79
2.063	3.25	52.40	4.84	53.19	42.47	42.47	6.35	59.06	53.98	25.40	54.76	0.79

Table C.27: Corrections shall be made as indicated within the red boxes:

Table C.27—Range Lengths

Dimensions in meters

	Range 1	Range 2	Range 3		
CASING (PE/T and C/SF)					
Total range length, inclusive	4.88 to 7.62	7.62 to 10.36	10.36 to 14.63		
Permissible variation, max ^a	1.83	1.52	1.83		
TUBING AND CASING USED AS TUBING (PE/T and C/SF)					
Total range length, inclusive	6.10 to 7.32 b	8.53 to 9.75 °	11.58 to 12.80 d		
Permissible variation, max ^a	0.61	0.61	0.61		
INTEGRAL TUBING CONNECTIONS (including IJ/PE and IJ/SF)					
Total range length, inclusive	6.10 to 7.92 ^e	8.53 to 10.36	11.58 to 13.72		
Permissible variation, max ^a	0.61	0.61	0.61		
PUP JOINTS	Lengths: 0.61; 0.91; 1.22; 1.83; 2.44; 3.05 and 3.66 e				
	Tolerance: ±0.076				

a Length variation applies to rail car shipment to the point of use and does not apply to order items of less than 18,144 kg of pipe.

Table C.28: Corrections shall be made as indicated within the red boxes:

Table C.28—Standard Drift Size

Dimensions in millimeters

Product and Label 1	Standard Drift Mandrel Size min				
	Length	Diameter			
Casing					
< 9 ⁵ / ₈	152	d – 3.18			
\geq 9 $^{5}/_{8}$ to \leq 13 $^{3}/_{8}$	305	d – 3.97			
> 13 ³ / ₈	305	d – 4.76			

b By agreement between purchaser and manufacturer, the maximum length may be increased to 8.57 m.

c By agreement between purchaser and manufacturer, the maximum length may be increased to 10.76 m.

d By agreement between purchaser and manufacturer, the maximum length may be increased to 13.72 m.

e 0.61 m pup joints may be furnished up to 0.91 m long by agreement between purchaser and manufacturer, and lengths other than those listed may be furnished by agreement between purchaser and manufacturer.

Table C.33: Values shall be updated as indicated within the red boxes:

Table C.33—API Buttress Thread Casing Coupling—Dimensions, Tolerances, and Masses

	Size a	Outside	Diameter	Minimum	Diameter	Width of		iss g	
Label 1	Outside Diameter D	ameter W ^{b, c} C		Special Clearance $^{\rm d}$ W_c Length N_L		Bearing Face	Regular	Special Clearance	
	mm	mm	mm	mm	mm	mm			
1	2	3	4	5	6	7	8	9	
4 ¹ / ₂	114.30	133.35	123.82	225.42	117.86	6.35	6.89	3.48	
5	127.00	147.32	136.52	231.78	130.56	7.14	8.38	4.00	
5 ¹ / ₂	139.70	160.02	149.22	234.95	143.26	7.14	9.30	4.47	

Table C.34: Values shall be updated as indicated within the red box:

Table C.34—API Non-upset Tubing Coupling—Dimensions, Tolerances, and Masses

	Size a					Maximum	
Label 1	Outside Diameter D	Outside Diameter W ^b	Minimum Length N_L	Diameter of Recess	Width of Bearing Face b	Bearing Face Diameter, Special Bevel B_f	Mass
	mm	mm	mm	mm	mm	mm	kg
1	2	3	4	5	6	7	8
1.050	26.67	33.35	80.96	28.27	1.59	30.00	0.23
1.315	33.40	42.16	82.55	35.00	2.38	37.80	0.38
1.660	42.16	52.17	88.90	43.76	3.18	47.17	0.59
1.900	48.26	55.88	95.25	49.86	1.59	52.07	0.56
2 ³ / ₈	60.32	73.02	107.95	61.93	4.76	66.68	1.28
2 ⁷ /8	73.02	88.90	130.18	74.63	4.76	80.98	2.34
3 1/2	88.90	107.95	142.88	90.50	4.76	98.42	3.71
4	101.60	120.65	146.05	103.20	4.76	111.12	4.35
4 ¹ / ₂	114.30	132.08	155.58	115.90	4.76	123.19	4.89

Table C.36: Corrections shall be made as indicated within the red box:

	ے د							
Casing ^a	< 6 ⁵ / ₈	0.89	0.76	0.76				
	\geq 6 $^{5}/_{8}$ to \leq 7 $^{5}/_{8}$	1.14	1.02	0.89				
	≥7 ⁵ / ₈	1.52	1.02	0.89				
a Includes casing used as tubing.								

Table C.38: Corrections shall be made as indicated within the red boxes:

C90 and T95	Coupling stock and coupling material	Coupling stock and coupling material for pipe Label 1: All sizes	1 b	1	
		Coupling blank	Label 1: < 9 ⁵ / ₈ : 50 ^c Label 1: ≥ 9 ⁵ / ₈ : 30 ^c	1	
	Hot forging	Coupling blank	Label 1: < 9 ⁵ / ₈ : 50 ^c Label 1: ≥ 9 ⁵ / ₈ : 30 ^c	1	_
C110 and Q125	Coupling stock and coupling material	Coupling stock and coupling material for pipe Label 1: All sizes	1 b	1	
		Coupling blank	Label 1: < 9 ⁵ / ₈ : 50 ^c Label 1: ≥ 9 ⁵ / ₈ : 30 ^c	1	_

Table C.39: Corrections shall be made as indicated within the red boxes:

Table C.39—Frequency of Tensile Testing—Pup Joints and Accessory Material

			Maximum Number of	Number	of Tests
Grade	Material and Heat Tre	eatment Conditions ^a	Pieces in a Lot	per Lot	per Heat
1	2	3	4	5	6
H40, J55, K55, N80 (all types)	Full-length standard tubing or casing	g from one or more heats	Label 1: $< 6.5/8$: 400 Label 1: $\ge 6.5/8$: 200	1	1
P110	Full-length standard tubing or casing	g from one or more heats	Label 1: < 6 ⁵ / ₈ : 200 Label 1: ≥ 6 ⁵ / ₈ : 100	1	1
H40, J55, K55, N80 (all types)	Thick-wall mechanical tube or bar st	tock from a single heat	Label 1: ≥4 ¹ / ₂ : 200 Label 1: > 4 ¹ / ₂ : 100	1	1
	Heat-treated in individual lengths or hot forgings	Batch heat treatment	100 pup joints or 400 accessory material	1	_
		Heat-treated in sequential loads or continuous heat treatment	In accordance with 10.2.3	1	_
R95, L80 Type 1	Full-length standard tubing or casing	g from one or more heats	Label 1: $<\frac{4}{1}\frac{1}{2}$: 200 Label 1: $\ge \frac{4}{1}\frac{1}{2}$: 100	2 a, b	2 ^{a, b}
	Thick-wall mechanical tube or bar st	tock from a single heat	Label 1: < 4 ¹ / ₂ , 200 Label 1: ≥ 4 ¹ / ₂ ; 100	2 a, b	2 a, b
	Heat-treated in individual lengths or hot forgings			2 b	_
		Heat-treated in sequential loads or continuous heat treatment	In accordance with 10.2.3	2 b	_

Table C.40: Corrections shall be made as indicated within the red box:

Table C.40—Frequency of Hardness Testing

Grade	Mat	erial	Number of Tests per Lot	Maximum Number of Pieces in a Lot	Type of Test	Location
1		2		4	5	6
Grade L80	Pipe, coupling	Label 1: ≤4 ¹ / ₂	2 a	200 b, c	Through-wall, 1 quadrant	Body tensile test
	stock, coupling material	Label 1: > 4 ¹ / ₂	2 a	100 b, c	Through-wall, 1 quadrant	Body tensile test
	Coupling bland forgings	ks or hot	2 a	Heat-treat lot or 400 coupling blanks b, c	Through-wall, 1 quadrant	Coupling blank tensile test
	Pup joints and accessory material (heat-treated in individual lengths)	Batch heat treatment (method a, 10.2.3)	2 ª	100 pup joints or 400 accessory material ^{b, c}	Through-wall, 1 quadrant	Pup joint or accessory tensile test
		Heat-treated in sequential loads (method b, 10.2.3)	2 ª	Lot (see 10.2) b, c	Through-wall, 1 quadrant	Pup joint or accessory tensile test
		Continuous heat treatment (method c, 10.2.3)	2₫	Lot (see 10.2) b, c	Through-wall, 1 quadrant	Pup joint or accessory tensile test

Table C.43: Corrections shall be made as indicated within the red boxes:

Table C.43—Acceptance (Inspection) Levels

Meterial	Grade	External In	nperfections	Internal Imperfections		
Material	Grade	Longitudinal	Transverse	Longitudinal	Transverse	
1	2	3	4	5	6	
	N80 Type 1	L3	_	L3	_	
	N80Q, L80, R95	L4	_	L4	_	
	P110 to K.9 (SR 16)	L4	L4	L4	L4	
Pipe body ^a	P110	L2	L2	L2	L2	
	P110 to K.9 (SR 16) and K3 (SR 2) L2	L2	L2	L2	

Table C.48: Corrections shall be made as indicated within the red boxes:

	_			I	l	I	I
8	Reduced alternative impact test temperature, if applicable. Fill in specified test temperature for full-size specimens, including symbol and C	«»C	Р	Р	Р	Р	
9	Heat treatment, if applicable:						
	— J55 or K55 normalised	Z	Р	Р	P	Р	Р
	— J55 or K55 normalised and tempered	N&T	Р	Р	Р	Р	Р
	1	1		1	ı	1	
11	Supplementary requirements, if applicable:						
	— K.2 (SR 1)	S1	Р		Р		
	— K.3 (SR 2)	S2	Р		Р		
	K.4 (SR 9) (fill in type)	S9Q«»				Р	
	— K.8 (SR 13)	S13		D or P		Р	
	— K.9 (SR 16) (fill in minimum full-size energy absorption requirement, in joules, and test temperature including symbol and C.	S16«»C	Р		Р	_ _	
	— K.10 (SR 22)	S22	Р	D	Р	D	
	— Annex H (PSL)	L2 or L3	Р	Р	Р	Р	Р

Table E.1: Corrections shall be made as indicated within the red boxes:

53.50

58.40

59.40

64.90

70.30

75.60

9 5/8

9 ⁵/₈

9 5/8

9 5/8

9.625

9.625

9.625

9.625

9.625

9.625

53.50

58.40

59.40

64.90

70.30

75.60

0.545

0.595

0.609

0.672

0.734

0.797

Table E.1—API Casing List (sizes, masses, wall thickness, grade, and applicable end-finish)

	Labe	els a	Outside Diameter	Linear Mass b,c T&C	Wall Thick- ness				Type of En	ıd-finish ^d			
Г	1	2	<i>D</i> in.	lb/ft	in.	H40	J55 K55	L80 R95	N80 Type 1, Q	C90 T95	C110	P110	Q125
	'	'			'	'	'			'			
\vdash	0.51	20.00	0.005	00.00	0.040				 			-	
1	9 5/8	32.30	9.625	32.30	0.312	PS	_	_	_	_	_	_	_
1	9 5/8	36.00	9.625	36.00	0.352	PS	PSLB		I —		=	_	_
	9 ⁵ / ₈	40.00	9.625	40.00	0.395	_	PSLB	PLB	PLB	PLB	Р	_	_
	9 ⁵ /8	43.50	9.625	43.50	0.435	_	_	PLB	PLB	PLB	Р	PLB	_
1	95/8	47.00	9.625	47.00	0.472	_	_	PLB	PLB	PLB	Р	PLB	PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

PLB

Table E.4: Values shall be updated as indicated within the red box:

Table E.4—Chemical Composition, Mass Fraction (%)

Type	(N	ln	N	lo	0	r	Ni	Cu	Р	S	Si
Type	min	max	min	max	min	max	min	max	max	max	max	max	max
2	3	4	5	6	7	8	9	10	11	12	13	14	15
_	_	_	_	_	_	_	_	_	_	_	0.030	0.030	_
_	_	_	_	_	_	_	_	_	_	_	0.030	0.030	_
_	_	_	_	_	_	_	_	_	_		0.030	0.030	_
	2	Type min	min max	Type min max min	Type min max min max	Type min max min max min	Type min max min max min max	Type min max min max min max min	Type min max min max min max min max	Type min max min max min max min max max	Type min max min max min max min max max max max	Type min max min max min max min max max <td>min max min max min max min max min max max</td>	min max min max min max min max min max max

Table E.5: Values shall be updated as indicated within the red boxes:

Table E.5—Tensile and Hardness Requirements

Grade	Туре	Total Elongation Under Load		trength si	Tensile Strength min		ess ^{a,c} ax	Specified Wall Thickness	Allowable Hardness Variation ^b
		%	min	max	ksi	HRC	HBW	in.	HRC
1	2	3	4	5	6	7	8	9	10
H40	_	0.5	40	80	60	_	_	_	_
J55	_	0.5	55	80	75	_	_	_	_
K55	_	0.5	55	80	95	_	_	_	_
N80	1	0.5	80	110	100	_	_	_	_
N80	Q	0.5	80	110	100	_	_	_	_
R95	_	0.5	95	110	105	_	_	_	_
L80	1	0.5	80	95	95	23.0	241	_	_
L80	9Cr	0.5	80	95	95	23.0	241	_	_
L80	13Cr	0.5	80	95	95	23.0	241	_	_
C90	1	0.5	90	105	100	25.4	255	≤ 0.500	3.0
								0.501 to 0.749	4.0
								0.750 to 0.999	5.0
								≥ 1.000	6.0

Table E.6: Values shall be updated as indicated within the red boxes:

0.500	0.660-0.673	0.495-0.505	0.330-0.336	27	22	18	17	16	15	14	13
0.510	0.674-0.686	0.506-0.514	0.337-0.343	27	22	18	17	17	15	14	13
0.520	0.687-0.700	0.515-0.525	0.344-0.350	27	22	18	17	17	15	14	13
0.530	0.701-0.713	0.526-0.534	0.351-0.356	28	23	18	17	17	15	14	13
0.540	0.714-0.726	0.535-0.545	0.357-0.363	28.	23	18	17	17	15	14	13
0.550	0.727-0.739	0.546-0.554	0.364-0.369	28	23	18	18	17	15	14	13
0.560	0.740-0.753	0.555-0.565	0.370-0.376	28	23	18	18	17	16	14	13
0.570	0.754-0.766	0.566-0.574	0.377-0.383	28	23	18	18	17	16	14	13
0.580	0.767-0.780	0.575-0.585	0.384-0.390	28	23	19	18	17	16	15	14
	0.570 0.560 0.550 0.540 0.530 0.520 0.510	0.570 0.754–0.766 0.560 0.740–0.753 0.550 0.727–0.739 0.540 0.714–0.726 0.530 0.701–0.713 0.520 0.687–0.700 0.510 0.674–0.686	0.570 0.754-0.766 0.566-0.574 0.560 0.740-0.753 0.555-0.565 0.550 0.727-0.739 0.546-0.554 0.540 0.714-0.726 0.535-0.545 0.530 0.701-0.713 0.526-0.534 0.520 0.687-0.700 0.515-0.525 0.510 0.674-0.686 0.506-0.514	0.570 0.754–0.766 0.566–0.574 0.377–0.383 0.560 0.740–0.753 0.555–0.565 0.370–0.376 0.550 0.727–0.739 0.546–0.554 0.364–0.369 0.540 0.714–0.726 0.535–0.545 0.357–0.363 0.530 0.701–0.713 0.526–0.534 0.351–0.356 0.520 0.687–0.700 0.515–0.525 0.344–0.350 0.510 0.674–0.686 0.506–0.514 0.337–0.343	0.570 0.754-0.766 0.566-0.574 0.377-0.383 28 0.560 0.740-0.753 0.555-0.565 0.370-0.376 28 0.550 0.727-0.739 0.546-0.554 0.364-0.369 28 0.540 0.714-0.726 0.535-0.545 0.357-0.363 28 0.530 0.701-0.713 0.526-0.534 0.351-0.356 28 0.520 0.687-0.700 0.515-0.525 0.344-0.350 27 0.510 0.674-0.686 0.506-0.514 0.337-0.343 27	0.570 0.754-0.766 0.566-0.574 0.377-0.383 28 23 0.560 0.740-0.753 0.555-0.565 0.370-0.376 28 23 0.550 0.727-0.739 0.546-0.554 0.364-0.369 28 23 0.540 0.714-0.726 0.535-0.545 0.357-0.363 28 23 0.530 0.701-0.713 0.526-0.534 0.351-0.356 28 23 0.520 0.687-0.700 0.515-0.525 0.344-0.350 27 22 0.510 0.674-0.686 0.506-0.514 0.337-0.343 27 22	0.570 0.754-0.766 0.566-0.574 0.377-0.383 28 23 18 0.560 0.740-0.753 0.555-0.565 0.370-0.376 28 23 18 0.550 0.727-0.739 0.546-0.554 0.364-0.369 28 23 18 0.540 0.714-0.726 0.535-0.545 0.357-0.363 28 23 18 0.530 0.701-0.713 0.526-0.534 0.351-0.356 28 23 18 0.520 0.687-0.700 0.515-0.525 0.344-0.350 27 22 18 0.510 0.674-0.686 0.506-0.514 0.337-0.343 27 22 18	0.570 0.754-0.766 0.566-0.574 0.377-0.383 28 23 18 18 0.560 0.740-0.753 0.555-0.565 0.370-0.376 28 23 18 18 0.550 0.727-0.739 0.546-0.554 0.364-0.369 28 23 18 18 0.540 0.714-0.726 0.535-0.545 0.357-0.363 28 23 18 17 0.530 0.701-0.713 0.526-0.534 0.351-0.356 28 23 18 17 0.520 0.687-0.700 0.515-0.525 0.344-0.350 27 22 18 17 0.510 0.674-0.686 0.506-0.514 0.337-0.343 27 22 18 17	0.570 0.754-0.766 0.566-0.574 0.377-0.383 28 23 18 18 17 0.560 0.740-0.753 0.555-0.565 0.370-0.376 28 23 18 18 17 0.550 0.727-0.739 0.546-0.554 0.364-0.369 28 23 18 18 17 0.540 0.714-0.726 0.535-0.545 0.357-0.363 28 23 18 17 17 0.530 0.701-0.713 0.526-0.534 0.351-0.356 28 23 18 17 17 0.520 0.687-0.700 0.515-0.525 0.344-0.350 27 22 18 17 17 0.510 0.674-0.686 0.506-0.514 0.337-0.343 27 22 18 17 17	0.570 0.754-0.766 0.566-0.574 0.377-0.383 28 23 18 18 17 16 0.560 0.740-0.753 0.555-0.565 0.370-0.376 28 23 18 18 17 16 0.550 0.727-0.739 0.546-0.554 0.364-0.369 28 23 18 18 17 15 0.540 0.714-0.726 0.535-0.545 0.357-0.363 28 23 18 17 17 15 0.530 0.701-0.713 0.526-0.534 0.351-0.356 28 23 18 17 17 15 0.520 0.687-0.700 0.515-0.525 0.344-0.350 27 22 18 17 17 15 0.510 0.674-0.686 0.506-0.514 0.337-0.343 27 22 18 17 17 15	0.570 0.754-0.766 0.566-0.574 0.377-0.383 28 23 18 18 17 16 14 0.560 0.740-0.753 0.555-0.565 0.370-0.376 28 23 18 18 17 16 14 0.550 0.727-0.739 0.546-0.554 0.364-0.369 28 23 18 18 17 15 14 0.540 0.714-0.726 0.535-0.545 0.357-0.363 28 23 18 17 17 15 14 0.530 0.701-0.713 0.526-0.534 0.351-0.356 28 23 18 17 17 15 14 0.520 0.687-0.700 0.515-0.525 0.344-0.350 27 22 18 17 17 15 14 0.510 0.674-0.686 0.506-0.514 0.337-0.343 27 22 18 17 17 15 14

Table E.7: The title shall be revised as indicated within the red box:

Table E.7—Critical Thickness for Couplings with API Threads

Dimensions in inches

	Critical Thickness for Couplings							
Label 1	NU	EU	Special (Clearance	ВС	LC	sc	
	NO		EU BC		ВС	LC	30	

Table E.10: Corrections shall be made as indicated within the red boxes:

	API Connec	tion Type and	CVN Specimer	n Orientation, S	Size, Energy, a	nd Temperatur	e Reduction
Label 1	NU	EU	Special C	learance ^b	ВС	LC	sc
	NO	EU	EU	ВС	ВС	LC	30
1	2	3	4	5	6	7	8
1.050	а	L-5-11-A	_	_	_	_	_
1.315	L-5-11 A	L-7-16-A	_	_	_	_	_
1.660	L-5-11-B	L-5-11-B	_	_	_	_	_
1.900	L-5-11-A	L-7-16-B	_	_	_	_	_
2 ³ / ₈	L-7-16-A	L-7-16-A	L-7-16-A	_	_	_	_
2 ⁷ / ₈	L-10-20-A	L-10-20-A	L-10-20-A	_	_	_	_
3 ¹ / ₂	T-5-8-E	T-5-8-E	T-5-8-D	_	_	_	_
4	T-7-12-B	T-7-12-B	_	_	_	_	_
4 ¹ / ₂	T-7-12-B	T-7-12-B	_	L-7-16-A	T-7-12-A	T-7-12-A	T-7-12-A
5	_	_	_	T-5-8-C	T-7-12-D	T-10-15-	T-7-12-D
5 ¹ / ₂	_	_	_	T-5-8-C	T-7-12-D	T-10-15-	T-10-15-D
6 ⁵ / ₈	_	_	_	T-10-15-A	T-10-15-A	T-10-15-A	T-10-15-A
7	_	_	_	T-7-12-A	T-10-15-A	T-10-15-A	T-10-15-B
7 ⁵ / ₈	_	_	_	T-10-15-A	T-10-15-A	T-10-15-A	T-10-15-A
8 ⁵ / ₈	_	_	_	T-10-15-A	T-10-15-A	T-10-15-A	T-10-15-A
9 ⁵ / ₈	_	_	_	T-10-15-A	T-10-15-A	T-10-15-A	T-10-15-A
10 ³ / ₄	_	_	_	T-10-15-A	T-10-15-A	_	T-10-15-A
11 ³ / ₄	_	_	_	_	T-10-15-A	_	T-10-15-A
13 ³ / ₈	_	_	_	_	T-10-15-A	_	T-10-15-A
16	_	_	_	_	T-10-15-A	_	T-10-15-A
18 ⁵ / ₈	_	_	_	_	T-10-15-A	_	T-10-15-A
20	_	_	_	_	T-10-15-A	T-10-15-A	T-10-15-A

Table E.13: Corrections shall be made as indicated within the red boxes:

Table E.13—Charpy Impact Test Specimen Requirements for Couplings, Coupling Stock, Coupling Material, Coupling Blanks, and Accessory Material for Grades N80 Type 1, N80Q, R95, and T95

		API Connection Type and CVN Specimen Orientation, Size, and Energy								
Label 1	All			learance ^b	DC.	1.0	00			
	NU	EU	EU	BC	BC	LC	SC			
1	2	3	4	5	6	7	8			
1.050	a	L-5-16	_	_	_	_	_			

Table E.23: Values shall be updated as indicated within the red box:

Table E.23—Dimensions and Masses for Standard Casing and for Casing Threaded with API Round Thread and Buttress Thread

					Inside Drift Diameter Diameter	Calculated Mass ^c				
Labels ^a	Outside Diameter	Nominal Linear Mass T& C b,c	Wall Thick- ness	Inside Diameter		Plain- end	e_m , Mass Gain or Loss Due to End Finishing $^{ m d}$ Ib			to End
Labels						Cita	Round	Thread	Buttress	Thread
	D in.	lb/ft	<i>t</i> in.	d in.	in.	w _{pe} lb/ft	Short	Long	RC	scc

Table E.27: Corrections and values shall be made as indicated within the red boxes:

Table E.27—Range Lengths

Dimensions in feet

	Range 1	Range 2	Range 3
CASING (PE/T and C/SF)			
Total range length, inclusive	16.0 to 25.0	25.0 to 34.0	34.0 to 48.0
Permissible variation, max ^a	6.0	5.0	6.0
TUBING AND CASING USED AS TUBING (PE/T and C/SF)			
Total range length, inclusive	20.0 to 24.0 b	28.0to 32.0 ^c	38.0 to 42.0 d
Permissible variation, max ^a	2.0	2.0	2.0

Table E.28: Corrections and values shall be made as indicated within the red boxes:

Table E.28—Standard Drift Size

Dimensions in inches

Product and Label 1		t Mandrel Size in
	Length	Diameter
Casing		
< 9 ⁵ / ₈	6	$d - \frac{1}{8}$
$\geq 9.5/_8$ to $\leq 13.3/_8$	12	$d - \frac{5}{32}$
> 13 ³ / ₈	12	$d - \frac{3}{16}$
Tubing ^{a, b}		
≤ 2 ⁷ / ₈	42	$d - \frac{3}{32}$
$> 2.7/_8$ to $\le 8.5/_8$	42	$d - \frac{1}{8}$
> 8.5/8 to $< 10.3/4$	42	d – ⁵ / ₃₂

^a Integral-joint tubing shall be tested before upsetting with a drift mandrel as shown, and shall also be drift-tested at the pin end, after upsetting, with a cylindrical drift mandrel 42 in. in length and $d_{iu} - 0.015$ in diameter (see Table E.26, Column 6 for d_{iu}).

Table E.33: Values shall be updated as indicated within the red box:

Table E.33—API Buttress Thread Casing Coupling—Dimensions, Tolerances, and Masses

	Size a	Outside	Diameter	Minimum	Diameter	Width of		ss o	
Label 1	Outside Diameter D	Regular Wb, c	Special Clearance $^{ m d}$ W_c	Length N_L	of Counterbore	Bearing Face	Regular	Special Clearance	
	in.	in.	in.	in.	in.	in.			
1	2	3	4	5	6	7	8	9	
4 1/2	4.500	5.250	4.875	8 ⁷ / ₈	4.640	1/4	15.19	7.68	
5	5.000	5.800	5.375	9 ¹ / ₈	5.140	9/32	18.46	8.82	
5 ¹ / ₂	5.500	6.300	5.875	9 1/4	5.640	9/32	20.50	9.85	
6 ⁵ /8	6.625	7.390	7.000	9 ⁵ /8	6.765	1/4	24.49	12.46	
7	7.000	7.875	7.375	10	7.140	⁵ / ₁₆	30.82	13.84	
7 5/8	7.625	8.500	8.125	10 ³ / ₈	7.765	⁵ / ₁₆	34.88	20.47	
8 ⁵ / ₈	8.625	9.625	9.125	10 ⁵ /8	8.765	3/8	45.99	23.80	
_	1	I	1		I	I		1	

Casing sizes larger than Label 1: 4 ¹/₂ but smaller than Label 1: 10 ³/₄ specified by the purchaser to be used in tubing service shall be marked as specified in Section 11.

Table E.38: Corrections shall be made as indicated within the red boxes:

C90 and T95	Coupling stock and coupling material	Coupling stock and coupling material for pipe Label 1: All sizes	1 b	1	_
		Coupling blank	Label 1: < 9 ⁵ / ₈ : 50 ^c Label 1: ≥ 9 ⁵ / ₈ : 30 ^c	1	_
	Hot forging	Coupling blank	Label 1: < 9 ⁵ / ₈ : 50 ^c Label 1: ≥ 9 ⁵ / ₈ : 30 ^c	1	_
C110 and Q125	Coupling stock and coupling material	Coupling stock and coupling material for pipe Label 1: All sizes	1 b	1	_
		Coupling blank	Label 1: < 9 ⁵ / ₈ : 50 ^c Label 1: ≥ 9 ⁵ / ₈ : 30 ^c	1	_

Table E.39: Values shall be updated as indicated within the red boxes:

Table E.39—Frequency of Tensile Testing—Pup Joints and Accessory Material

			Maximum Number of	Number of Tests		
Grade	Material and Heat Tr	eatment Conditions ^a	Pieces in a Lot	5 1 1 1 1 2 a, b 2 b	per Heat	
1	2	3	4	5	6	
H40, J55, K55, N80 (all types)	Full-length standard tubing or casin	g from one or more heats	Label 1: < 6 ⁵ / ₈ : 400 Label 1: ≥ 6 ⁵ / ₈ : 200	1	1	
P110	Full-length standard tubing or casin	g from one or more heats	Label 1: < 6 ⁵ / ₈ : 200 Label 1: ≥ 6 ⁵ / ₈ : 100	1	1	
H40, J55, K55, N80 (all types)	Thick-wall mechanical tube or bar s	Label 1: ≥ 4 ¹ / ₂ : 200 Label 1: > 4 ¹ / ₂ : 100	1	1		
	Heat-treated in individual lengths or hot forgings	Batch heat treatment	100 pup joints or 400 accessory material	1	_	
		Heat-treated in sequential loads or continuous heat treatment	In accordance with 10.2.3	1	_	
R95, L80 Type 1	Full-length standard tubing or casin	g from one or more heats	Label 1: < 4 ¹ / ₂ : 200 Label 1: ≥ 4 ¹ / ₂ : 100	2 a, b	2 a, b	
	Thick-wall mechanical tube or bar s	tock from a single heat	Label 1: $< 4 \frac{1}{2}$: 200 Label 1: $\ge 4 \frac{1}{2}$: 100	2 a, b	2 a, b	
	Heat-treated in individual lengths or hot forgings	Batch heat treatment	100 pup joints or 400 accessory material	2 b	_	
		Heat-treated in sequential loads or continuous heat treatment	In accordance with 10.2.3	2 b	_	
		•				

Table E.40: Corrections shall be made as indicated within the red box:

Table E.40—Frequency of Hardness Testing

Grade			Number of Tests per Lot	Maximum Number of Pieces in a Lot	Type of Test	Location
1			3	4	5	6
Grade L80	Pipe, coupling	Label 1: ≤4 ¹ / ₂	2 a	200 b, c	Through-wall, 1 quadrant	Body tensile test
	stock, coupling material	Label 1: > 4 ¹ / ₂	2 a	100 b, c	Through-wall, 1 quadrant	Body tensile test
	Coupling blanks or hot forgings		2 a	Heat-treat lot or 400 coupling blanks b, c	Through-wall, 1 quadrant	Coupling blank tensile test
	Pup joints and accessory material	Batch heat treatment (method a, 10.2.3)	2 ^a	100 pup joints or 400 accessory material ^{b, c}	Through-wall, 1 quadrant	Pup joint or accessory tensile test
	(heat-treated in individual lengths)	Heat-treated in sequential loads (method b, 10.2.3)	2 a	Lot (see 10.2) b, c	Through-wall, 1 quadrant	Pup joint or accessory tensile test
		Continuous heat treatment (method c, 10.2.3)	23	Lot (see 10.2) b, c	Through-wall, 1 quadrant	Pup joint or accessory tensile test

Table E.43: Corrections shall be made as indicated within the red boxes:

Table E.43—Acceptance (Inspection) Levels

	1	Crade	External Im	perfections	Internal Imp	perfections
Pipe body a N80 Type 1 L3 — L3 — N80Q, L80, R95 P110 to K.9 (SR 16) L4 — L4 — P110 to K.9 (SR 16) L4 L4 L4 L4 P110 to K.9 (SR 16) and KI (SR 2) L2 L2 L2 L2 P110 to K.9 (SR 16) and KI (SR 2) L2 L2 L2 L2 L2 C90, T95, C110, Q125 UT L2 L2 L2 L2 L2 Coupling stock All grades except C110 L2 L2 L2 N N Weld seam P110, Q125 L2 N L2 N L2 N All other grades L3 N L3 N N N	,	srade .	Longitudinal	Transverse	Longitudinal	Transverse
N80Q, L80, R95 L4		2	3	4	5	6
P110 to K.9 (SR 16) L4 L4 L4 L4 L4 L4 L4 L4 L4 L	N80 Type 1		L3	_	L3	_
P110	N80Q, L80, R95		L4	_	L4	_
P110 to K.9 (SR 16) and K	P110 to K.9 (SR 1	16)	L4	L4	L4	L4
C90, T95, C110, Q125 UT	P110		L2	L2	L2	L2
Coupling stock All grades except C110 L2 L2 L2 N N	P110 to K.9 (SR 1	l6) and K <mark>③</mark> (SR 2)	L2	L2	L2	L2
Q125 Second method L2 L2 — — —	C90, T95, C110,	UT	L2	L2	L2	L2
C110 L2 L2 L3 L3 Weld seam P110, Q125 L2 N L2 N All other grades L3 N L3 N		Second method	L2	L2	_	_
Weld seam P110, Q125 L2 N L2 N All other grades L3 N L3 N	All grades except C110		L2	L2	N	N
All other grades L3 N L3 N	C110		L2	L2	L3	L3
	P110, Q125		L2	N	L2	N
All other grades to 13 (SR 2) L2 N L2 N	All other grades		L3	N	L3	N
	All other grades to	o <mark>K</mark> 3 (SR 2)	L2	N	L2	N
NOTE N = Not re		N80 Type 1 N80Q, L80, R95 P110 to K.9 (SR 1 P110 P110 to K.9 (SR 1 C90, T95, C110, Q125 All grades except C110 P110, Q125 All other grades All other grades to quired; L _x = Acceptar	N80 Type 1 N80Q, L80, R95 P110 to K.9 (SR 16) P110 P110 to K.9 (SR 16) and K (SR 2) C90, T95, C110, Q125 All grades except C110 P110, Q125 All other grades	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Longitudinal Transverse 2 3 4 N80 Type 1 L3 — N80Q, L80, R95 L4 — P110 to K.9 (SR 16) L4 L4 P110 L2 L2 P110 to K.9 (SR 16) and K③(SR 2) L2 L2 C90, T95, C110, Q125 UT L2 L2 All grades except C110 L2 L2 L2 C110 L2 L2 L2 P110, Q125 L2 N N All other grades L3 N All other grades to [3] (SR 2) L2 N quired; Lx = Acceptance (inspection) level. N	Longitudinal Transverse Longitudinal 1 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table E.48: Corrections shall be made as indicated within the red boxes:

4	Size designation (fill in Label 1 designation from Column 1 of Table E.1 or E.2						
	Specified diameter for coupling stock and other products with no mass designation						
5	Mass designation (fill in Label 2 designation from Table E.1 or E.2)						
	Specified wall thickness for coupling stock and other products with no mass designation						
		ı	ı	1			1
8	Reduced alternative impact test temperature, if applicable. Fill in specified test temperature for full-size specimens, including symbol and F	«»F	Р	Р	Р	Р	
9	Heat treatment, if applicable:						
ı	— J55 or K55 normalised	Z	Р	Р	Р	Р	Р
	— J55 or K55 normalised and tempered	_{N&T} □	Р	Р	Р	Р	Р
_	1						
11	Supplementary requirements, if applicable:						
	— K.2 (SR 1)	S1	Р		Р		
	— K.3 (SR 2)	S2	Р		Р		
	- K.4 (SR 9) (fill in type)	S9Q«»				Р	
	— K.8 (SR 13)	S13		D or P		Р	
	1						1

requirement, in till and test temperature including symbol and F) Р S16«....»F - K.10 (SR 22) S22 Р D Р D - Annex H (PSL) Ρ Ρ Р L2 or L3 Ρ Ρ Hydrostatic test pressure e (fill in the actual test pressure, in psi) All designations P«....» Р Р

Ρ

Table G.2: The title shall be revised as indicated within the red box:

- K.9 (SR 16) (fill in minimum

Table H.1: Corrections shall be made as indicated within the red boxes:

Table H.1—Reference Table for PSL-2 and PSL-3 Requirements (Continued)

	·						Grade					
Annex H	API 5CT	J55	K55	N80 Type 1	N80 Q	R95	L80 Type 1	L80 13Cr	C90	T95	P110	Q125
1	2	3	4	5	6	7	8	9	10	11	12	13
H.18.1.1	10.15.5	2	2									
H.18.1.2	10.15.5			2	2							
	10.15.6											
H.18.1.3	10.15.6					2	2	2				